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Abstract-The inertia, boundary and velocity-square terms, normally not included in the flow analysis, are 
included in the study of natural convection between isothermal, concentric cylinders (inner cylinder heated) 
filled with saturated, porous media. The results show that all of these effects reduce the heat transfer rate with 
the boundary term being the most significant. It is shown that since at high Rayleigh numbers the flow 
adjacent to the confining walls becomes of boundary-layer type, with a very thin sublayer over which the 
velocity reaches its maximum value, then as long as the contribution of the velocity-square term is small, 
Darcy’s model holds for very large Rayleigh and Prandtl numbers. A flow regime diagram showing the 

pseudo-conduction, Darcy and non-Darcy regimes, is given. 

1. INTRODUCTION 

FLUID llow in saturated, porous media with high 
~~~bilities manifests some of the characteristics of 
the flow in the absence of a rigid matrix, i.e. the inertia 
and boundary effects not included in Darcy’s model 
may become significant [l-4]. Also, at high velocities 
the rigid matrix resistance is no longer given by 
Darcy’s law, i.e. the velocity-square term becomes 
significant [SJ. The inertia or development term which 
may be significant in the leading edge region (external 
flows) [l-3] and in the entrance region (internal flows) 
[4] becomes less significant in the presence of a solid 
matrix because the lower the permeability the shorter 
is the development region [l, 3,4]. This is due to the 
proportionality of the flow resistance to the local 
velocity which tends to make the velocity field 
uniform. In boundary-layer flows, the relative 
influence of the boundary term on the heat transfer 
rate is manifested in the ratio of the thermal to 
momentum boundary-layer thickness [ 1,3,4]. In 
general, for a given flow driving force (pressure 
gradient or buoyancy~ the results have shown that 
each of the three effects, i.e. inertia, boundary and 
velocity-square, reduces the heat transfer rate. 

In natural convection between isothermal, 
horizontal cylinders-as in other enclosure convec- 
tions-as the buoyancy potential (Rayleigh num- 
ber) increases, three regimes are observed. First is the 
regime of no significant convection, i.e. conduction re- 
gime, then the non-boundary-layer convection or the 
conduction+onvection regime is observed. Finally the 
boundary-layer flow regime is reached. At still higher 
Rayleigh numbers the flow becomes unstable and 
various transitions have been observed. Convection 
between isothermaf, horizontal cylinders has been 
studied in detail in the presence of a rigid matrix in 
Darcy’s regime Cd-91 and also in the absence of any 

rigid matrix [lo, 111. It is found that when no rigid 
matrix is present, and for air, unsteady three- 
dimensional flows begin above Ra = 3 x lo6 and 10’ 
for R = 2 and 4, respectively fll], where R is the 
diameter ratio and Ra is the Rayleigh number. When 
the solid matrix is present and Darcy’s law holds, it is 
found that for R = 2 and Raye2 greater than 134, 
unsteady three-dimensional convection will take place 
[6], where y2 is proportional to the inverse of the 
~~eability. 

In this study, the non-Darcy effects on natural 
convection between two concentric, isothermal, 
horizontal cylinders (inner cylinder heated) filled with 
a fluid-saturated, porous medium, are studied by 
solving the two-dimensional conservation equations 
numeri~lly. Some of the Ra and Ray-’ values 
considered in this study are larger than the critical 
values given above for very small and very large 
permeabilities. However, since no definite statement 
can yet be made for moderate permeabilities the 
numerical results are assumed to be for stable flows. 
Figure 1 gives a schematic of the problem considered. 

2. ANALYSIS 

Assuming local thermal equilibrium between the 
solid and fluid, and also, a Boussinesq fluid, the 
conservation equations based on the available 
empirical data and the volume average principles [1] 
are 

V-u=0 (1) 

(u.V)u = -p;‘Vp+pp,‘gk+vV2u 

-K-1&vu---F~*K-~‘*~u~u (2) 

(u’V)T = a,V2T (3) 

where equation (2) allows for the Darcy resistance as 
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-. ~- -____ --____- .- .- 
NOMENCLATURE 

I 

diameter [m] 
empirical constant 
gravitational constant [m sv2] 
permeability [mZ] 
pressure m m _ ‘1 
effective Prandtl number, v/or, 
radial position [m] 
unit vector 
ratio of outside to inside diameter, 

DoID, 
RU Rayleigh number, g/I( ?; - T,)D~/vu, 
T temperature [“Cl 
AT I;-T,E”C] 
u velocity vector [m s-l] 
M r-direction velocity [m s- ‘1 
13 $-direction velocity [m s - ‘1. 

Greek symbols 
effective thermal diffusivity [m2 s-r] 
thermal expansion coefficient c”C] 

Y dimensionless porous media shape 
parameter (ratio of large to small 
length scale) (ED,/K)"~ 

& porosity 
v kinematic viscosity [m’s_ 1 J 

: 

azimuthal angle [rad] 
unit vector 

9 streamfunction [m2 s - 2] 
Y dimensionless second-order resistance 

due to the presence of the solid 
matrix, Fe2Di/K"' 

w vorticity [s-r]. 

Superscript 
* dimensional. 

Subscripts 
i inside 
max maximum 
0 outside 

r, Cp r and 4 derivatives. 

well as for the second-order resistance found for pore 
Reynolds numbers larger than unity [5]. However, 
these equations do not account for any dispersion or 
spreading of momentum and thermal energy due to 
inter-pore mixing in the presence of a velocity 
gradient. This effect which is only significant at 
relatively high velocities and for large gradients, is 
discussed in ref. [12]. For the present problem these 
equations can reasonably describe the phenomena. 

The above equations have been non- 
dimensionalized using : 

r* = L UD. T-T, 

Di ’ 
a* =---1. and T* =- 

Et, T-T, 

in the following all the quantities are dimensionless 
and the asterisks are dropped for convenience. 

Introducing the streamfunction (r-‘$o = u and 
$, = -U) and vorticity (w = V x u), we arrive at the 
following vorticity equation by taking the curl of 
equation (2) 

Pr-‘r-1($,w,-Il/lw4) 

= V%--Ra(r-‘cos+T++sin 

-Yz~+~cr-i(r~nl~~)~ 

+ r- 2(In1~&$l . 

We also have 

#T,) 

(4) 

v=* = --w (5) 
r-l(~~~-~~~~) = V’T. (6) 

The emerging dimensionless parameters are: 

The physical significance of these parameters are: 

(a) the relative buoyancy potential given by the 
Rayleigh number Ra; 

(b) the relative significance of the inertia term given by 
the Prandtl number Pr; 

(c) the first-order rigid matrix resistance given by the 
porous media shape parameter y, which is the 
ratio of the large length scale (taken to be the 
curvature instead of the gap spacing) to small 
length scale; and 

(d) second-order rigid matrix resistance given by Y. 

The boundary conditions are (also shown in Fig. 1) 

at r=0.5 $=O,T= l,w= -*,, (7) 

at r=R/2 $=O,T=O,w= -$,, (8) 

at 4=0,x $=O,T,=O,w=O (9) 

where R is the ratio of the outside to inside diameter. 

3. SOLUTION AND VALIDATION 

Equations (4~(6) subject to equations (7 j(9) are 
solved numerically using the finite-difference 
approximations (hybrid method [ 13]), a uniform grid 
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FIG. 1. A schematic of the problem considered. 

net and the relaxation technique. The convergence 
criterion was that the change in the normalized value 
of the streamfunction between any two successive 
iterations be less than 10-j. This criterion as well as 
the node spacings of Ar = 0.025 and Atp = n/18 were 
chosen based on many trials and also by comparison 
of the results with those available in the literature for 
no rigid matrix present (y = 0) as given in ref. [ 1 l] and 
those based on the exclusion of inertia, boundary and 
velocity square terms (Pr --) cc, Ra -+ c=c and Y = 0) 
as given in refs. [6-81. The quantities used in the 
compari~n with the available results were $, T 
and the average Nusselt number. The results for the 
comparison ofthe average Nusselt number for Darcy’s 
regime are given in Figs. 5 and 6 and will be discussed 
later. In all cases agreements were found with the 
results of [6-8,11]. 

In addition, for each run, an overall energy balance 
was made, i.e. the integrated heat transfer rate through 
the inner cylinder must be equal to that out of the 
outer cylinder. Agreements to less than 1 y0 of the heat 
transfer rates were found. 

The average normalized inner wall Nusselt number 
is defined as 

1nR * 
Nu= --% 

s 
ZJr = 0.5) d4 (10) 

0 

where 2/1n R is the conduction Nusselt number. 

4. RESULTS AND DISCUSSION 

In special cases equation (4) simplifies to the 
following forms 

(a) Ru --) co, Pr -+ cc, Y + 0 (i.e. Darcy’s law) 

-Ray-2(r-‘cos~T,+sin~T,)-o=0. (11) 

(b) Ra + co, Pr -+ cc (i.e. insignificant inertial force 
and shear stresses) 

-R~y-~(r-‘cos~T,+sin#1;)-w 

+~-‘Cr-‘(rl~l~~)~ 

+r-2(lul$,),l = 0. (12) 

(c) Pr + co (i.e. insignificant inertial effects) 

y-2VoZ-Ray-z(r-‘cos~T~fsin~T,)-o 

+yy-*Cr-‘(r~u~~,), 

+r-2(/u(@J,J = 0. (13) 

Since we are interested in the net heat transfer rate 
between the cylinders, the results will be presented 
such that they demonstrate the effect of the in- 
ertia, boundary and veI~ity-square terms on the 
average inner wall Nusselt number, i.e. 
Nu = Nu(R,Pr,Ra, y,Y). All of these effects reduce 
the heat .transfer rate, but their relative significance 
varies greatly. In this study two diameter ratios, 
namely R = 2 and 4, have been chosen. Table 1 gives 
examples of some porous media saturated with gases 
at near standard conditions [ 14). The porous media 
are polyurethane foams and some of the values given 
are not encountered in practice and are given for 
appreciation of the order of magnitude for the 

Table 1. The effect of the velocity-square term on the average inner wall Nusselt number, for some gas-saturated foams 
~- 

Geometry Dimensionless parameters 

FIuid,gfi/v2 AT l)i E F* R Pr* Ra yz Y Rays2 Nu, 
(mm3 K-‘) (K) (m) Nu(Y = 0) 

1.6x lo8 to2 0.05 0.9 1o-S 0.1 2 0.5 106 2X IO2 1.3 
10-s 2x 105 41 
10-s 4 2 x 102 1.3 
10-s 2x105 41 
1o-s 0.5 2 2 x 102 6.4 
10-s 2x105 200 
10-s 4 2 x 10’ 6.4 
10-s 2x10s 200 

5x lo3 1.0 
5 1.0 

5x 10’ 0.90 
5 1.0 

5x 103 0.94 
5 1.0 

5x 103 0.8 1 
5 1.0 

* For some polyurethane foams saturated with gases. In general k, and F change with K. K = lo-’ m2 and F = 0.5 are 
given as examples of extreme cases and are not normally encountered. 
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FIG. 2. The effect of inclusion of the inertia and boundary 
terms on the average inner wall Nusselt number. The results 
are for R = 2, Ra = 106, Pr = 0.5 and various values of y’. 

various dimensionless parameters. This table will be 
further examined in the section on the effect of the 
velocity-square term on the heat transfer rate. 

Since a relatively comprehensive presentation of the 
variations in Nu with respect to each of the variables 
given above is rather lengthy, in the following some 
limited results are given with the objective of 
constructing flow regime diagrams where the regions 
of Darcy and non-Darcy convections can be identified. 

4.1. Inertia and boundary terms 
For a given relative buoyancy potential, as the 

permeability decreases the velocity decreases and the 
contribution of the inertia term to the overall force 
balance vanishes. A similar trend is expected for the 
shear-stress term. Figure 2 shows the variation in the 
average inner wall Nusselt number with the 
permeability for a given R, Ra and Pr. The inertia 
effect is not significant at low permeabilities,? while 
the boundary effect persists to relatively lower 
permeabilities and generally dominates the inertia 
effects. 

As shown in ref. [6], for the Darcy regime, as the 
value of Ray -z increases the center of the cellular 
motion (one on each side) moves upward, i.e. above 
4 = n/2. Of course, this behavior is also observed 
when no rigid matrix is present (e.g. [ll]). Since the 
Darcy’s model does allow for velocity slip of the 
boundaries, it is expected that the inclusion of the 
boundary term would lower the center of the cell. 
Figure 3 shows the lines of constant temperature and 
streamfunction for Ra = lo6 and Ray-’ = 5 x 103. As 
expected, the boundary term causes the center of the 
circulation to move downward and also reduces the 
circulation (i.e. $,,,). The results for no boundary 

t Note that Ray-’ = (g/W1a~‘E-‘ATD;)K. 

FIG. 3. The effect of inclusion of inertia and boundary terms 
on lines of constant streamfunction and temperature. The 
results are for R = 2, Ra = 106, Pr = 0.5 and y* = 2 x IO’. 

term are in agreement with the trend found in ref. [6] 
for R = 2. In ref. [6] the results are given for the values 
of Ray-’ equal to 40 and 400 (Figs. 4 and 7 in [6]). 
Note that as shown in Fig. 3 and found in ref. [6], for 
large values of Ray-*, the upward flow near the center 
of the cell is nearly vertical. 

4.2. Prandtl number 
The case of Pr -+ cc corresponds to no inertia 

effects. As Pr decreases, the effect of inertia increases. 
Figure 4 shows a further decrease in the Nusselt 
number with a decrease in the Prandtl number. Also 
when the conduction regime is approached, the results 
are independent of Prandtl number. 

4.3. Rayleigh number 
When both the buoyancy term and the first-order 

rigid matrix resistance term dominate over the other 
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FIG. 4. The effects of the Prandtl number on the average 
inner wall Nusselt number for R = 2, Ra = lo6 and various 

values of y2. 
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Nu .- 

R.3-t 2 

FIG. 5. The effect of inclusion of the inertia and boundary 
terms on the average inner wall Nusselt number for R = 2, 
Pr = 0.5 and various values of Ra. The numerical results of 
Caltagirone for no inertia and boundary effects are also 

given. 

Pr.05 

FIG. 6. The effect of inclusion of the inertia and boundary 
terms on the average inner wall Nusselt number for R = 4, 
Pr = 0.5 and various values of Ra. The numerical results of 
Caltagirone for no inertia and boundary effects are also 

given. 

terms, Darcy’s law holds. This corresponds to a 
boundary-layer type flow. Therefore, Darcy’s model is 
valid for high Rayleigh numbers. This is shown in Fig. 
5 (for R = 2) where the increase in Rayleigh number, 
for a given Ray-‘, results in vanishing inertia and 
boundary effects. 

Based on the results given in Fig. 5, we note that in 
order to determine the regime of significant boundary 
and inertia effects, in addition to Ray-* the value of Ra 
should also be considered. Figure 6 shows similar 
results for R = 4. For this diameter ratio,-/ for a given 
Ray-* the Nusselt number is larger than that for 
R = 2. This is due to the increase in the circulation 
strength which confines the boundary effects to a small 
distance from the walls. As Ra increases, this 
boundary layer becomes thinner and the ‘velocity 
jump’ characteristic of Darcy’s model, is approached. 

In Figs. 5 and 6 the tabulated numerical results of 
ref. [6] are also shown and the agreement with the 
present results is good. 

t Note that the Nusselt and Rayleigh numbers are based 
on Di. 

4.4. Velocity-square term 
Since the velocity-square term contains the 

permeability, its magnitude must be changed in 
accordance with y*. Table 1 gives a range for Y 
characteristic of foams saturated with gases at near 
standard conditions [ 141. The reduction in the Nusselt 
number, due to this term, is only significant when: (a) 
Ray-* is large (due to large Ra and high K), which 
results in high velocities; and (b) F is large. The 
maximum reduction in the Nusselt number, for the 
media considered, is about 20%. In general this term 
does not contribute significantly to the reduction of 
the Nusselt number. 

4.5. Flow regimes 
Since for low permeability media the inertia term is 

insignificant, the Prandtl number effect can be 
neglected. Also, the velocity-square term is significant 
only when the boundary term is significant. Therefore, 
the boundary between regimes of Darcy and non- 
Darcy flow can be determined by only specifying Ra 
and y*. Although the transition from Darcian to non- 
Darcian regime is not absolute, we have taken any 
difference less than a few percent in NM between the 
results based on the inclusion of all terms and 
exclusion of them, to indicate that the effects are 
negligible (Darcian convection). This is done in Fig. 7 
for R = 2 and 4. As expected, pseudo-conduction 
regime persists up to higher Ray-* for R = 2. 

The results show that 

(a) along a line of constant K (or r’), as AT (or Ra) 
increases the conduction regime, Darcy regime 
and non-Darcy regime are encountered; and 

(b) along a line of constant Ray-* (or ATK), as Ra (or 
AT) increases the non-Darcy effect becomes less 
significant. 

It is desirable to examine the experimental results of 
ref. [6] for R = 2 (where glass beads and water were 
used) which have been shown to be in good agreement 
with the predictions based on Darcy’s model. 

1 10 102 103 104 

1 10 102 103 104 

Fo-* 

FIG. 7. The regimes of significant inertia and boundary 
effects for R = 2 and 4. 
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Unfortunately, not all the necessary experimental 
conditions needed for evaluation of Ra are given in ref. 
[6]. However, if we estimate the effective Prandtl 2. 

number to be about 3.0 [lS] and also assuming that 
data for Ray - ’ = 6 in the experiments of ref. [6] is for 3. 
7;-- T, = lO”C, then we have 3 x IO6 < Ra < 3 x lOa. 
Now, examination of Fig. 7 shows that, as expected, 
the experimental results of ref. [6] are for high 

4. 

Rayleigh numbers and, therefore, are in Darcy’s 
regime. 
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5. SUMMARY 6. 

Based on a semi-empirical momentum equation 
[I], which does not include the dispersion due to the I. 

inter-pore mixing in the presence of velocity gradients, 
the effects of inertia, boundary and velocity square a. 
terms on the heat transfer rate between two isothermal 
horizontal cylinders filled by a saturated porous 
medium is studied numerically. The results show that 9. 

(9 all of these effects reduce the heat transfer rate 
with the boundary effect being the most 10. 
significant; 

(ii) since at high values of Ra, the flow becomes 
nearly of boundary-layer type, then for small 11. 

values of F Darcy’s law holds when Ra and Pr 
both become very large; and 

(iii) for a given R, the boundary between the Darcy 12. 
and non-Darcy regimes is given by Ray-’ and 
Ra. The flow regime diagrams for R = 2 and 4 are 13. 

determined. 14. 

M. Kaviany. Onset of thermal convection in a saturated 
porous medium: experiment and analysis, Imr. J. Heat 
Mass Transfer 27, 210 l-2 110 ( 1984). 
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EFFETS NON DARCIENS SUR LA CONVECTION NATURELLE DANS LES MILIEUX 
POREUX CONFINES ENTRE DES CYLINDRES HORIZONTAUX 

R&m&-Les termes d’inertie, de frontiire et de car& de vitesse, norma~ement ignorks dans l’analyse de 
I’&oulement sont inclus dans l’btude de la convection naturelle entre des cylindres isothermes, concentriques 
(cylindre inttrieur chaud), avec remplissage par un milieu poreux saturb. Les r&ultats montrent que tous 
ces effets rCduisent le transfert de chaleur, le terme de frontibre etant le plus important. On montre que 
puisque, aux grands nombres de Reynolds, l’koulement adjacent aux parois devient du type couche limite 
avec une tr& fine sous-couche au-delri de laquelle la vitesse atteint son maximum, aussi longtemps que la 
contribution du terme de carr& de vitesse est faible, le mod&e de Darcy est valabie pour de t&s grands 
nombres de Rayleigh et de Prandtl. On donne un ~agramme montrant les rkgimes de pseudo-conduction. 

de Darcy et de non Darey. 

NICHT-DARCY-EFFEKTE BE1 NATURLICHER KONVEKTION IN PORBSEN MEDIEN 
ZWISCHEN ZWEI HORIZONTALEN ZYLINDERN 

Zosammenfassung-Die quadratischen Terme fiir TrBgheit, Berandung und Geschwindigkeit, die nor- 
malerweise in der Str~mungsanalyse nicht ~r~cksichti~t sind, werden in die Untersuchung der nat~rlichen 
Konvektion zwischen isothermen konzentrischen Zylindern (innerer Zylinder beheizt), bei denen der Spalt 
mit einem gesgttigten porijsen Medium gefiillt ist, einbezogen. Die Ergebnisse zeigen, dai.3 all diese Effekte 
den W&netransport behindem, wobei der Term fiir die Berandung der bedeutendste ist. Es zeigt sich, da13 
bei hohen Rayleigh-Zahlen die Strijmung an den ZylinderwSinden vom Typ einer Grenzschichtstriimung 
mit einer sehr diinnen Unterschicht ist, oberhalb der die Geschwindigkeit maximal wird. Solange der 
Beitrag des quadratischen Geschwindigkeitsterms klein ist, gilt deshalb Darcy’s Model1 fiir sehr groI3e 
Rayieigh- und Prandtl-Zahlen. Ein Diagramm der Striimungsbereiche zeigt Gebiete der Pseudo- 

W~~eleitung, au~rdem Darcy- und Nicht-Darcy-~biete. 
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kVD2JIEJJOBAHHE BJIMIIHkIB WDEKTOB, HE IIO~YkiHJI~IIJkiXC5l3AKOHY UPCII, 
HA ECTECTBEHHYIO KOHBEKUMIO B 3AKJIWIEHHOti MEJKAY ABYMll 

TOPkI30HTAJIbHbIMZI qMJIMH~AMH I-IOPHCTO~ CPEAE 

kRlOTNWl-npOBeneIi0 HCCJIenOBaHUe eCTeCTBeHHOti KOHBeKWH Me;stsy H30TepMHWCKHMH KOHUeHT- 

~HV~KHMU~~~~~H~HH~IMUH~~~~HH~~~~O~A~TOZLC~~~O~~H~~~M~(BH~HH~~~K~HH~~H~~~T) 

C y'IeTOM BnHlIHHK ElHepIIHOHHbIX CHn, r'paHH'IHbIX yCnOBHii H IIpOWCCOB, OIIHCbIBaeMbIX KBanpaTHV- 

HbIMH IlO CKOpOCTH WIeHaMU,'iTO 06bI'iHO HeneJIaJ'IOCb paHee.B p3ynbTaTe IIOny'ieHO MeHbLLWZ 3Hase- 

mie IUIOTHOCTU Tennonoro noToKa, Ha KOTO~~IO 6onbme ~cero BJIHKIOT ycnosan Ha rpasuue. B cnny 
TOrO,YTO llpH 6onbmux 3Ha'ieHWIX SiCna PWIeK IIOTOK B6nH3H OrpaHHWiBaKWUXCTeHOK npao6peTaeT 

XapaKTep TeYeHHK B nOrpaHW!HOM CnOe, B KOTOpOM B03MOXSia MaKCHMaJIbHal CKOpOCTb B rIpenenaX 

O'feHb TOHKOrO IIOnCnOR, rIOKa3aH0, 4TO MOnenb AapcH MOXCHO HCIIOnb30BaTb IIpH OYeHb 6onbmex 

'IHCnaX PWIeR II npaHnTJIff TOnbKO B TOM CnyYae,IIOKa BnHRHUe IIpOUeCCOB,Om%%IBaeMbIX KBanpaTH'I- 

HbIMH no CK~~OCTH YneHaMu, HesHawTenbHo. llpuseneHa nwarpahshsa TeqeHwii, wnntocTpupymmaa 


