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Abstract—The inertia, boundary and velocity-square terms, normally not included in the flow analysis, are
included in the study of natural convection between isothermal, concentric cylinders (inner cylinder heated)
filled with saturated, porous media. The results show that all of these effects reduce the heat transfer rate with
the boundary term being the most significant, It is shown that since at high Rayleigh numbers the flow
adjacent to the confining walls becomes of boundary-layer type, with a very thin sublayer over which the
velocity reaches its maximum value, then as long as the contribution of the velocity-square term is small,
Darcy’s model holds for very large Rayleigh and Prandtl numbers. A flow regime diagram showing the
pseudo-conduction, Darcy and non-Darcy regimes, is given.

1. INTRODUCTION

FLuiD flow in saturated, porous media with high
permeabilities manifests some of the characteristics of
the flow in the absence of a rigid matrix, i.e. the inertia
and boundary effects not included in Darcy’s model
may become significant [1-4]. Also, at high velocities
the rigid matrix resistance is no longer given by
Darcy’s law, i.e. the velocity-square term becomes
significant [5]. The inertia or development term which
may be significant in the leading edge region (external
flows) [1-3] and in the entrance region (internal flows)
[4] becomes less significant in the presence of a solid
matrix because the lower the permeability the shorter
is the development region {1, 3,4]. This is due to the
proportionality of the flow resistance to the local
velocity which tends to make the velocity field
uniform. In boundary-layer flows, the relative
influence of the boundary term on the heat transfer
rate is manifested in the ratio of the thermal to
momentum boundary-layer thickness [1,3,4]. In
general, for a given flow driving force (pressure
gradient or buoyancy) the results have shown that
each of the three effects, i.e. inertia, boundary and
velocity-square, reduces the heat transfer rate.

In natural convection between isothermal,
horizontal cylinders—as in other enclosure convec-
tions—as the buoyancy potential {Rayleigh num-
ber) increases, three regimes are observed. First is the
regime of no significant convection, i.e. conduction re-
gime, then the non-boundary-layer convection or the
conduction—convection regime is observed. Finally the
boundary-layer flow regime is reached. At still higher
Rayleigh numbers the flow becomes unstable and
various transitions have been observed. Convection
between isothermal, horizontal cylinders has been
studied in detail in the presence of a rigid matrix in
Darcy’s regime [6-9] and also in the absence of any

rigid matrix [10, 11]. It is found that when no rigid
matrix is present, and for air, unsteady three-
dimensional flows begin above Ra = 3 x 10° and 10°
for R =2 and 4, respectively [11], where R is the
diameter ratio and Ra is the Rayleigh number. When
the solid matrix is present and Darcy’s law holds, it is
found that for R =2 and Ray~? greater than 134,
unsteady three-dimensional convection will take place
[6], where y? is proportional to the inverse of the
permeability.

In this study, the non-Darcy effects on natural
convection between two concentric, isothermal,
horizontal cylinders (inner cylinder heated) filled with
a fluid-saturated, porous medium, are studied by
solving the two-dimensional conservation equations
numerically. Some of the Ra and Ray~? values
considered in this study are larger than the critical
values given above for very small and very large
permeabilities. However, since no definite statement
can yet be made for moderate permeabilities the
numerical results are assumed to be for stable flows.
Figure 1 gives a schematic of the problem considered.

2. ANALYSIS

Assuming local thermal equilibrium between the
solid and fluid, and also, a Boussinesq fluid, the
conservation equations based on the available
empirical data and the volume average principles [1]
are

Veu=0 o)

u-Vu= —p " Vp+pp gk +vWa
~K ™ tevu—Fe?K ™12 |uju 2)
@-V)T = o, VT 3)

where equation (2) allows for the Darcy resistance as
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NOMENCLATURE
D diameter [m] ¥ dimensionless porous media shape
F empirical constant parameter (ratio of large to small
g gravitational constant [ms~?] length scale) (eD,/K)!/?
K permeability [m?] & porosity
p pressure [N'm 2] v kinematic viscosity [m?s™!]
Pr effective Prandtl number, v/u, ¢ azimuthal angle [rad]
r radial position [m] ] unit vector
r unit vector ¥ streamfunction [m?s ™~ %] ‘
R ratio of outside to inside diameter, ¥ dimensionless second-order resistance |
D, /D, due to the presence of the solid
Ra Rayleigh number, gB(T, — T,)D?/va, matrix, Fe?D,/K'/?
T temperature [°C] w vorticity {s™'].
AT  T-T,[°C] .
. u velocity vector [ms™*] Superscript ) )
u r-direction velocity [ms™*] * dimensional.
v ¢-direction velocity [ms™!]. Subscripts
i inside
Greek symbols max  maximum
a, effective thermal diffusivity [m2s™ ] ) outside
B thermal expansion coefficient [°C] r, ¢ r and ¢ derivatives.

well as for the second-order resistance found for pore
Reynolds numbers larger than unity [5]. However,
these equations do not account for any dispersion or
spreading of momentum and thermal energy due to
inter-pore mixing in the presence of a velocity
gradient. This effect which is only significant at
relatively high velocities and for large gradients, is
discussed in ref. [12]. For the present problem these
equations can reasonably describe the phenomena.

The above equations have been non-
dimensionalized using:
r uD; T~T,
*=—, y*=-—— and T*= °
D; % I-T,

in the following all the quantities are dimensionless
and the asterisks are dropped for convenience.

Introducing the streamfunction (r"'¢r, =u and
i, = --v) and vorticity {& = Vxu), we arrive at the
following vorticity equation by taking the curl of
equation {2)

Proir W, o0, —,w,)
= V2w —Ral{r~ ' cos ¢ T, +sin ¢T)
—yo+¥r (ruly,),
+r7 2 (ulyg)s] 4
We also have
Vi = —a@ {5)
r e T,—¥, T,) = V*T. (6

The emerging dimensionless parameters are:

D T,-T)D}
R:——E’ Ra:gﬁ(] O)l
Di xV

2 2
. &b _ Fe*D; v
veEx YT

The physical significance of these parameters are:

{a) the relative buoyancy potential given by the
Rayleigh number Ra;

(b) the relative significance of the inertia term given by
the Prandtl number Pr;

{c) the first-order rigid matrix resistance given by the
porous media shape parameter y, which is the
ratio of the large length scale (taken to be the
curvature instead of the gap spacing) to small
length scale; and

(d) second-order rigid matrix resistance given by V.

The boundary conditions are (also shown in Fig. 1}
at r=05 Yy=0,T=1Lw=—-y, ()
at r=R2 y=0,T=0,0= -y, (8
at ¢=0,7n y=0,T,=0,0=0 9

where R is the ratio of the outside to inside diameter.

3. SOLUTION AND VALIDATION

Equations (4)-(6) subject to equations (7)}-(9) are
solved numerically using the finite-difference
approximations (hybrid method [13]), a uniform grid
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FI1G. 1. A schematic of the problem considered.

net and the relaxation technique. The convergence
criterion was that the change in the normalized value
of the streamfunction between any two successive
iterations be less than 1073, This criterion as well as
the node spacings of Ar = 0.025 and A¢ = =n/18 were
chosen based on many trials and also by comparison
of the results with those available in the literature for
no rigid matrix present (y = 0) as given in ref. [11] and
those based on the exclusion of inertia, boundary and
velocity square terms (Pr — oc, Ra— o and ¥ = 0)
as given in refs. [6-8]. The quantities used in the
comparison with the available results were ¢, T
and the average Nusselt number. The results for the
comparison of the average Nusselt number for Darcy’s
regime are given in Figs. 5 and 6 and will be discussed
later. In all cases agreements were found with the
results of [6-8, 11].

In addition, for each run, an overall energy balance
was made, i.e. the integrated heat transfer rate through
the inner cylinder must be equal to that out of the
outer cylinder, Agreements to less than 19 of the heat
transfer rates were found. '
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The average normalized inner wall Nusselt number
is defined as

InR ("

Nu= ———| T(r=05)d¢ (10)
2n o

where 2/In R is the conduction Nusselt number.

4. RESULTS AND DISCUSSION

In special cases equation (4) simplifies to the
following forms

(a) Ra— o0, Pr— oo, ¥ -0 (i.e. Darcy’s law)
—Ray *(r~tcos ¢T,+sin ¢T,)—w = 0. (11)

(b) Ra— o0, Pr-» o (i.e. insignificant inertial force
and shear stresses)

—Ray~*r"* cos ¢T;+sin ¢T))—w
+¥y72[r rfuly,),
+rT 2(|u||f/,,,)¢) =0. (12)
(c) Pr— oo (i.e. insignificant inertial effects)
y~*Vw? —Ray *(r~ ' cos ¢ T, +sin ¢T;)—w
¥y (),
+r 2(uly,),1 = 0. (13)

Since we are interested in the net heat transfer rate
between the cylinders, the results will be presented
such that they demonstrate the effect of the in-
ertia, boundary and velocity-square terms on the
average inner wall Nusselt number, i.e.
Nu = Nu(R, Pr,Ra,y,¥). All of these effects reduce
the heat transfer rate, but their relative significance
varies greatly. In this study two diameter ratios,
namely R = 2 and 4, have been chosen. Table 1 gives
examples of some porous media saturated with gases
at near standard conditions [14]. The porous media
are polyurethane foams and some of the values given
are not encountered in practice and are given for
appreciation of the order of magnitude for the

Table 1. The effect of the velocity-square term on the average inner wall Nusselt number, for some gas-saturated foams

Geometry Dimensionless parameters
Fluid, gB/v> AT D £ K F* R Pr* Ra y? ¥ Ray~? Nu,
mK™Y (K) (m) (m?) Nu(¥ =0)
1.6 x 108 107 005 09 107° 0.1 2 05 105 2x10® 13 5x 10° 1.0
10~ 2% 10° 41 5 1.0
1073 4 2x 102 13 Sx 10° 0.90
10-8 2x 10° 41 5 1.0
1073 0.5 2 2x102 64 5% 10° 0.94
108 2x10° 200 5 10
10-3 4 2x 10> 64 Sx 10° 0.81¢
10°8 2x 105 200 5 1.0

* For some polyurethane foams saturated with gases. In general k, and F change with K. K = 10" °m? and F = 0.5 are
given as examples of extreme cases and are not normally encountered.
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/
Inertia and boundary  ,
terms not included V;

Only inertia term
included \

Nu Only boundary term

included N\

Inertia and boundary
terms included

Ra=100
Pr=0.5

102 2 5 103 2 5 104
Ray 2

F1G. 2. The effect of inclusion of the inertia and boundary
terms on the average inner wall Nusselt number. The results
are for R = 2, Ra = 10%, Pr = 0.5 and various values of y2.

various dimensionless parameters. This table will be
further examined in the section on the effect of the
velocity-square term on the heat transfer rate.

Since a relatively comprehensive presentation of the
variations in Nu with respect to each of the variables
given above is rather lengthy, in the following some
limited results are given with the objective of
constructing flow regime diagrams where the regions
of Darcy and non-Darcy convections can be identified.

4.1. Inertia and boundary terms

For a given relative buoyancy potential, as the
permeability decreases the velocity decreases and the
contribution of the inertia term to the overall force
balance vanishes. A similar trend is expected for the
shear-stress term. Figure 2 shows the variation in the
average inner wall Nusselt number with the
permeability for a given R, Ra and Pr. The inertia
effect is not significant at low permeabilities,T while
the boundary effect persists to relatively lower
permeabilities and generally dominates the inertia
effects.

As shown in ref. [6], for the Darcy regime, as the
value of Ray~? increases the center of the cellular
motion (one on each side) moves upward, i.c. above
¢ = n/2. Of course, this behavior is also observed
when no rigid matrix is present (e.g. [11]). Since the
Darcy’s model does allow for velocity slip of the
boundaries, it is expected that the inclusion of the
boundary term would lower the center of the cell.
Figure 3 shows the lines of constant temperature and
streamfunction for Ra = 10%and Ray ™2 = 5x 103, As
expected, the boundary term causes the center of the
circulation to move downward and also reduces the
circulation (i.e. ¥,,,). The results for no boundary

t Note that Ray~2 = (gBv™lag ‘e 'ATD)K.
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/__inertia and boundary
terms included

~ —~inertia and boundary terms
not included

e
R:2
Ra - 108

Pre0.5
Y222 x102

F1G. 3. The effect of inclusion of inertia and boundary terms
on lines of constant streamfunction and temperature. The
results are for R =2, Ra = 10°, Pr = 0.5 and 72 = 2 x 102,

term are in agreement with the trend found in ref. [6]
for R = 2.1In ref. [6] the results are given for the values
of Ray~? equal to 40 and 400 (Figs. 4 and 7 in [6]).
Note that as shown in Fig. 3 and found in ref. [6], for
large values of Ray~ 2, the upward flow near the center
of the cell is nearly vertical.

42. Prandtl number

The case of Pr— oc corresponds to no inertia
effects. As Pr decreases, the effect of inertia increases.
Figure 4 shows a further decrease in the Nusselt
number with a decrease in the Prandtl number. Also
when the conduction regime is approached, the results
are independent of Prandtl number.

4.3. Rayleigh number
When both the buoyancy term and the first-order
rigid matrix resistance term dominate over the other

12 T + +
\ .
\
e \ Ra-10° +
\ — — — Inertia and boundary terms
not included
87 \ Inrtia and boundary terms +
\ included

Nu

FiG. 4. The effects of the Prandtl number on the average
inner wall Nusselt number for R = 2, Ra = 10° and various
values of y2.
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Inertia and boundary terms included, Pr=0.5 -
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F1G. 5. The effect of inclusion of the inertia and boundary
terms on the average inner wall Nusselt number for R = 2,
Pr = 0.5 and various values of Ra. The numerical results of
Caltagirone for no inertia and boundary effects are also

given.
10 aee + +——+—+—++++ + + :'y_:.o:.i{-:- 1
i -~ 0\‘
1 & Caltagirone _ /\\’"\“ 1
1 __ _ Inertia and boundary terms not included _ - y—01
i Inertia and houndary terms included, a7~ 5.7 """
P 10
No Pr-0.5 >
p. > 4
P~
104 720
1 + + +—+—+—++++ t +—+—+—+—t++
10! 102 103
RaY?

F1G. 6. The effect of inclusion of the inertia and boundary

terms on the average inner wall Nusselt number for R = 4,

Pr = 0.5 and various values of Ra. The numerical results of

Caltagirone for no inertia and boundary effects are also
given.

terms, Darcy’s law holds. This corresponds to a
boundary-layer type flow. Therefore, Darcy’s model is
valid for high Rayleigh numbers. This is shown in Fig.
5 (for R = 2) where the increase in Rayleigh number,
for a given Ray~2, results in vanishing inertia and
boundary effects.

Based on the results given in Fig. 5, we note that in
order to determine the regime of significant boundary
and inertia effects, in addition to Ray ~ 2 the value of Ra
should also be considered. Figure 6 shows similar
results for R = 4. For this diameter ratio, T for a given
Ray~? the Nusselt number is larger than that for
R = 2. This is due to the increase in the circulation
strength which confines the boundary effects to a small
distance from the walls. As Ra increases, this
boundary layer becomes thinner and the ‘velocity
Jjump’ characteristic of Darcy’s model, is approached.

In Figs. 5 and 6 the tabulated numerical results of
ref. [6] are also shown and the agreement with the
present results is good.

tNote that the Nusselt and Rayleigh numbers are based
on D;.

HMT 29:10-E

1517

4.4. Velocity-square term

Since the velocity-square term contains the
permeability, its magnitude must be changed in
accordance with y2. Table 1 gives a range for ¥

charastarictic aof foam
VIIALAVIWVIIOUIV V1 IUGILLIID DG VU LA L

standard conditions [ 14]. The reduction in the Nusselt
number, due to this term, is only significant when: (a)
Ray~? is large (due to large Ra and high K), which
results in high velocities; and (b) F is large. The
maximum reduction in the Nusselt number, for the
media considered, is about 209/, In general this term
does not contribute significantly to the reduction of
the Nusselt number.

¢ caturated with cacec at near
G Wil gadls au filalr

4.5. Flow regimes

Since for low permeability media the inertia term is
insignificant, the Prandtl number effect can be
neglected. Also, the velocity-square term is significant
only when the boundary term is significant. Therefore,
the boundary between regimes of Darcy and non-
Darcy flow can be deiermined by only specifying Ra
and y2. Although the transition from Darcian to non-
Darcian regime is not absolute, we have taken any
difference less than a few percent in Nu between the
results based on the inclusion of all terms and
exclusion of them, to indicate that the effects are
negligible (Darcian convection). This is done in Fig. 7
for R=2 and 4. As expected, pseudo-conduction
regime persists up to higher Ray~2 for R = 2.

The results show that

(a) along a line of constant K (or y2), as AT (or Ra)
increases the conduction regime, Darcy regime
and non-Darcy regime are encountered; and

(b) along aline of constant Ray 2 (or ATK), as Ra (or
AT) increases the non-Darcy effect becomes less
significant.

It is desirable to examine the experimental results of
ref. [6] for R = 2 (where glass beads and water were
used) which have been shown to be in good agreement
with the predictions based on Darcy’s model.

- 102 103 104 ,
107 + +——++H +——-HHHE10
E / 7/ f
T Insignificant ineia / s/ 4 E:
I and boundary I
effects /v
T (Darcy's regime) Vi / T
1065 y 7 100
i 274
Ra 4 i / / £
T ] /
[ / / ‘Sgnibcant inertia
108 ¥ / and boundary
I | 1,7 effects
1 > VA RS
b NI { 7 " P
T 1/
104 by
1 10 102
Ray 2

FIG. 7. The regimes of significant inertia and boundary
effects for R = 2 and 4.



1518

Unfortunately, not all the necessary experimental
conditions needed for evaluation of Ra are given in ref.,
[6]. However, if we estimate the effective Prandt!
number to be about 3.0 [15] and also assuming that
data for Ray~? = 6 in the experiments of ref. [6] is for
T.— T, = 10°C, then we have 3 x 10° < Ra < 3 x 10%,
Now, examination of Fig. 7 shows that, as expected,
the experimental results of ref. [6] are for high
Rayleigh numbers and, therefore, are in Darcy’s
regime.

5. SUMMARY

Based on a semi-empirical momentum equation
[17, which does not include the dispersion due to the
inter-pore mixing in the presence of velocity gradients,
the effects of inertia, boundary and velocity square
terms on the heat transfer rate between two isothermal
horizontal cylinders filled by a saturated porous
medium is studied numerically. The results show that

(i) all of these effects reduce the heat transfer rate
with the boundary effect being the most
significant;

(i) since at high values of Ra, the flow becomes
nearly of boundary-layer type, then for small
values of F Darcy’s law holds when Ra and Pr
both become very large; and
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EFFETS NON DARCIENS SUR LA CONVECTION NATURELLE DANS LES MILIEUX
POREUX CONFINES ENTRE DES CYLINDRES HORIZONTAUX

Résumé—Les termes d’inertie, de frontiére et de carré de vitesse, normalement ignorés dans l'analyse de
T'écoulement sont inclus dans I'étude de la convection naturelle entre des cylindres isothermes, concentriques
(cylindre intérieur chaud), avec remplissage par un milieu poreux saturé. Les résultats montrent que tous
ces effets réduisent le transfert de chaleur, le terme de frontiére étant le plus important. On montre que
puisque, aux grands nombres de Reynolds, 'écoulement adjacent aux parois devient du type couche limite
avec une trés fine sous-couche au-deld de laquelle la vitesse atteint son maximum, aussi longtemps que la
contribution du terme de carré de vitesse est faible, le modéle de Darcy est valable pour de trés grands
nombres de Rayleigh et de Prandtl. On donne un diagramme montrant les régimes de pseudo-conduction,
de Darcy et de non Darcy.

NICHT-DARCY-EFFEKTE BEI NATURLICHER KONVEKTION IN POROSEN MEDIEN
ZWISCHEN ZWEI HORIZONTALEN ZYLINDERN

Zusammenfassung—Die quadratischen Terme fiir Trigheit, Berandung und Geschwindigkeit, die nor-
malerweise in der Stromungsanalyse nicht beriicksichtigt sind, werden in die Untersuchung der natiirlichen
Konvektion zwischen isothermen konzentrischen Zylindern (innerer Zylinder beheizt), bei denen der Spalt
mit einem geséttigten pordsen Medium gefiillt ist, einbezogen. Die Ergebnisse zeigen, daB all diese Effekte
den Wirmetransport behindern, wobei der Term fiir die Berandung der bedeutendste ist. Es zeigt sich, dafl
bei hohen Rayleigh-Zahlen die Strémung an den Zylinderwinden vom Typ einer Grenzschichtstrémung
mit einer sehr diinnen Unterschicht ist, oberhalb der die Geschwindigkeit maximal wird. Solange der
Beitrag des quadratischen Geschwindigkeitsterms klein ist, gilt deshalb Darcy’s Modell fiir sehr groBe
Rayleigh- und Prandtl-Zahlen. Ein Diagramm der Strémungsbereiche zeigt Gebiete der Pseudo-
Wirmeleitung, auBerdem Darcy- und Nicht-Darcy-Gebiete.
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UCCIEJOBAHHUE BIAUSHUSA 3OGOEKTOB, HE MOAYHNHAIOINXCA 3AKOHY JAPCH,
HA ECTECTBEHHYIO KOHBEKLIMIO B 3AKJIIOYEHHOH MEXAY JBYMSA
TOPU30HTAJIBHBIMU LIMJTMHIPAMM IMTOPUCTON CPEJIE

Amoramus—IIpoBeieHO HCCIENOBAHUE €CTECTBCHHON KOHBEKIMH MEXY H30TEPMHYECKHMH KOHIEHT-
PHYECKHMH 3aNOJIHEHHBIME HaCHILIEHHON MOPHCTON Cpenoll MMIHHAPAMH (BHYTPEHHHH [UTHHIP HArpeT)
C YYETOM BJIMAMHS MHEPLUMOHHBIX CHJI, TPDAHHYHBIX YCJIOBHH H NPOLIECCOB, OMHCHIBAEMBIX KBaApaTHY-
HbIMH TI0 CKOPOCTH WJIEHAMH, YTO 0OBIYHO He [€NaNoCh paHee. B pe3yabraTe MojyueHO MEHbLIEE 3HaYe-
HHE IUIOTHOCTH TEIJIOBOrO MOTOKA, Ha KOTOPYIO GOJIbUIE BCETO BIMSAIOT YCIOBHMS Ha TpaHHue. B chiy
TOTO, YTO TpH GOJIBUIMX 3HAYEHUsX Yucia Pases MOTOK BOIH3M OrpaHHYHMBAIOIIMX CTEHOK NpHOOpeTaeT
XapakTep TeuyeHHs B MOTPAHHYHOM CIIOE, B KOTOPOM BO3MOXXHa MAaKCHMAaJlbHas CKOPOCTb B Npe/esax
OYeHb TOHKOTO IIOACJIOA, NMOKAa3aHO, 4TO MOAeab JapCH MOXHO HCNOJB30BaTh NPH OYeHb OONBIIMX
yacnax Panes u IpaHaTns TONBKO B TOM ClIy4ae, TOKa BJIHSHHE MPOLECCOB, OMUCHIBAEMBIX KBapaTHY-
HbIMH IO CKOPOCTH 4JIEHaMH, He3HauuTenbHO. IIpHBeleHa nuarpaMma TeYeHHMH, WUIIOCTPHpYIOLIasn
HanuuMe ncepaopexuma JapcH U pexuma, He MOAYHHSIOErocs 3akoHy Japceu.
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